L’hyperthermie : le quatrième pilier de l’oncologie

Fondements scientifiques de la thermothérapie
L'hyperthermie : le quatrième pilier de l'oncologie
Fondements scientifiques de la thermothérapie .. 4 - 7

Deux points faibles des tumeurs malignes
Réseau sanguin sinueux et cellules hypoxiques .. 8

Les effets de l'hyperthermie sur le plan biochimique
Attaquer les cellules à très faible pH ... 9

Pourquoi l'hyperthermie multiplie jusqu’à 5 fois l’efficacité de la radiothérapie
Amélioration de la perfusion et de l’apport en oxygène 10

Pourquoi l’hyperthermie augmente significativement l’efficacité des cytostatiques
Activation de réactions chimiques .. 11

L’hyperthermie et les biothérapies
Protéines de choc thermique et inhibiteurs de l’angiogenèse 12

Pourquoi l’hyperthermie simplifie les interventions chirurgicales
Forte diminution des tumeurs ... 13

Hyperthermie et qualité de vie
Moins d’effets secondaires, moins de douleurs .. 13

Résultats d’études à grande échelle
Régressions significatives et meilleurs taux de survie 14 - 15

Bénéfices thérapeutiques de l’hyperthermie
Toujours plus loin .. 16

Promoteurs et centres de recherche sur l’hyperthermie
De la recherche à l’application clinique .. 17

Contacts ... 18 - 19
La chaleur en action
L’hyperthermie : le quatrième pilier de l’oncologie

Fondements scientifiques de la thermothérapie

« Heat in on in Oncology » : c’est sous cette devise que la recherche et l’application clinique de la thermothérapie avancent actuellement à grands pas. S’il y a quelques années encore, cette modalité thérapeutique paraissait douteuse et ses effets n’étaient pas prouvés, nombreux sont désormais les grands centres hospitaliers universitaires à travailler sur cette thérapeutique anticancéreuse d’une grande complexité technique. Une modalité thérapeutique qui, et c’est important de le préciser, associée aux traitements standard, peut sauver plus de vies et allonger l’espérance de vie d’un plus grand nombre de personnes que tous les nouveaux médicaments mis au point ces dernières années.

L’hyperthermie induite à haute fréquence peut augmenter significativement les taux de survie de patients atteints d’un cancer. Dans des études cliniques de phase III associant l’hyperthermie à la radiothérapie, la thermothérapie a permis d’augmenter les résultats à 2 ans du contrôle tumoral local de 12 % à 37 % chez des patients atteints d’un sarcome à haut risque, et de 28 % à 46 % chez ceux atteints d’un mélanome ; les taux de rémission complète de 38 % à 60 % pour les récidives de cancer du sein ; les taux de survie à 2 ans de 15 % à 31 % pour les glioblastomes, et la rémission complète de 57 % à 83 % dans le cancer du col de l’utérus avancé, par rapport à des patients traités par radiothérapie ou chimiothérapie seule.
La chaleur en action
Concrètement, le réchauffement destiné au traitement par hyperthermie est généré par l’émission d’ondes radio dans les tissus. Passé un certain laps de temps, des protéines de choc thermiques émergent à la surface de la cellule tumorale. Il en résulte une activation des cellules immunitaires, qui sont alors à même de détruire efficacement les cellules tumorales porteuses de ces protéines de choc thermique.
Deux points faibles des tumeurs malignes

> Réseau sanguin sinuieux et cellules hypoxiques

Les tumeurs malignes se forment sous l’effet de la croissance de cellules qui ont muté et qui, pour survivre, ont besoin de plus d’énergie que les cellules saines, normales. Pour permettre leur prolifération incontrôlée, ces tumeurs ne peuvent se contenter des vaisseaux sanguins existants, qui ne suffisent plus à assurer leurs besoins en nutriments et en oxygène. Les tumeurs malignes stimulent alors la formation de nouveaux vaisseaux sanguins. Mais ces néovaisseaux forment des réseaux anarchiques par rapport à ceux des tissus sains. Leur taille est anormale, et ils se ramifient en nœuds et impasses. En raison de la structure irrégulière de ces vaisseaux, des grandes zones tumorales se trouvent souvent en hypoxie. Les cellules hypoxiques n’étant plus en mesure d’éliminer suffisamment les substances toxiques du sang, elles ont un pH bas. De surcroît, on observe souvent des modifications importantes dans la perfusion de ces tumeurs, car les vaisseaux instables s’affaissent régulièrement et soustraient de l’oxygène aux cellules. Or, les cellules vivant en milieu appauvri en oxygène sont les plus difficiles à détruire par les rayonnements ionisants (qui entraînent la formation de radicaux libres, lesquels attaquent l’ADN) ou par la chimiothérapie (qui emprunte le réseau sanguin pour délivrer les cytostatiques). Mais comme les cellules cancéreuses hypoxiques ont tendance à former des métastases, leur destruction est une priorité absolue dans la thérapeutique anticancéreuse.
Les effets de l’hyperthermie sur le plan biochimique

L’hyperthermie détruit les cellules cancéreuses en entrainant un échauffement à l’intérieur de la tumeur de 41,5 °C à 43 °C. Ce traitement se sert donc des points faibles des tumeurs malignes qui ont été décrites ci-dessus : comme l’organisme tente de lutter contre l’hyperthermie par la perfusion, l’élévation thermique persiste au sein des tumeurs, car leur perfusion est médiocre ou irrégulière, tandis que les tissus sains adjacents correctement perfusés sont refroidis.

D’après les scientifiques, l’apoptose des cellules cancéreuses soumises à une hyperthermie serait due aux lésions causées au niveau de la membrane plasmique, du cytosquelette et du noyau cellulaire.

Les cellules cancéreuses sont particulièrement sensibles à l’hyperthermie car elles ont un pH bas, dû à l’incapacité à éliminer les métabolismes anaérobies. L’hyperthermie s’attaque aux cellules en milieu acidifié, rompt la stabilité des protéines cellulaires et les détruit.

Mode d’action biochimique de l’hyperthermie
Pourquoi l’hyperthermie multiplie jusqu’à 5 fois l’efficacité de la radiothérapie

Amélioration de la perfusion et de l’apport en oxygène

L’échauffement induit par l’hyperthermie augmente la perfusion et, par conséquent, l’apport d’oxygène à la tumeur, un facteur important pour augmenter l’efficacité de la radiothérapie. En effet, les rayonnements ionisants détruisent les tissus cancéreux principalement en créant des radicaux libres, qui attaquent l’ADN des cellules tumorales. Or, les cellules tumorales en conditions d’hypoxie sont trois fois plus résistantes aux rayonnements ionisants que les cellules saines. Chez l’homme, il existe un lien direct entre une hypoxie dans la tumeur et l’échec de la radiothérapie. Et, à l’inverse, la radiothérapie est d’autant plus efficace que la teneur en oxygène est élevée dans le tissu tumoral. En plus de la formation de radicaux libres qui attaquent l’ADN des cellules tumorales, l’hyperthermie entraîne également la concentration de protéines dans le noyau cellulaire. Ce mécanisme empêche l’autoréparation de l’ADN des cellules cancéreuses, qui ont été lésées par les rayonnements ionisants. La potentialisation de l’efficacité des rayonnements ionisants par la chaleur se fonde également sur les phases du cycle cellulaire : en effet, les cellules tumorales en phase de synthèse sont assez résistantes aux rayonnements ionisants, et à la fois sensibles aux effets destructeurs de l’hyperthermie.

L’hyperthermie et la radiothérapie se révèlent donc complémentaires : lorsque le tissu tumoral a une perfusion médiocre, il est résistant aux rayonnements ionisants, et s’avère sensible à l’hyperthermie. S’il est bien perfusé, le tissu tumoral réagit à peine à la chaleur, mais est sensible aux rayonnements ionisants. Cette interaction et cette complémentarité sont une excellente raison d’associer l’hyperthermie et la radiothérapie (thermoradiothérapie). Des études in vivo ont montré que le traitement par hyperthermie peut augmenter les effets de la radiothérapie de 1,5 à 5 fois. L’hyperthermie se trouve donc être l’un des potentialisateurs les plus efficaces de la radiothérapie.

Mode d’action synergétique de la radiothérapie et de l’hyperthermie
Pourquoi l’hyperthermie augmente significativement l’efficacité des cytostatiques

> Activation de réactions chimiques

L’hyperthermie peut aussi augmenter significativement l’efficacité de la chimiothérapie. Comme pour la radiothérapie, cela s’explique par une meilleure perfusion du tissu tumoral. Lorsque la perfusion est augmentée, elle facilite l’absorption des cytostatiques dans les membranes cellulaires. L’élévation thermique sert d’activateur au traitement médicamenteux, car les réactions chimiques sont accélérées par la chaleur.

L’hyperthermie est un complément idéal de la chimiothérapie notamment dans le traitement de tumeurs de grande taille. Généralement, le centre et d’autres régions de ce type de foyer tumoral sont mal perfusés, et les cellules sont retardées dans leur croissance : de ce fait, ces foyers sont difficilement accessibles aux cytostatiques, qui attaquent principalement les cellules à division rapide. L’hyperthermie augmente considérablement la perfusion des cellules tumurales et donc l’absorption des médicaments.

De nombreuses publications décrivent les interactions entre l’hyperthermie et divers cytostatiques, comme la doxorubicine, la mitomycine C, la mitoxantrone, la bléomycine, la cisplatine, les nitroso-urées et la cyclophosphamide. Elles ont révélé que la thermothérapie permet de restaurer la réponse des tumeurs résistantes aux cytostatiques.

L’hyperthermie et les biothérapies

Protéines de choc thermique et inhibiteurs de l’angiogenèse

Dans la thérapie génique, l’hyperthermie s’avère être un activateur de nouvelles formes de biothérapies, car la production de gènes est accélérée d’un facteur 100 par la chaleur (thérapie génique induite par la chaleur).

L’hyperthermie joue un rôle essentiel dans l’immunothérapie et le développement de vaccins anticancéreux. La chaleur crée un état de stress pour les cellules cancéreuses. En réponse au stress, elles synthèsent des protéines de choc thermique, qui, à leur tour, activent le système immunitaire. La compréhension de ce phénomène a donné lieu à de nombreux travaux de recherche, en vue de savoir comment mettre au point des immunothérapies à l’aide de ces protéines de choc thermique et associer diverses techniques de vaccination à l’hyperthermie.

D’après les résultats des chercheurs, l’hyperthermie contribue également à l’anti-angiogenèse, car elle inhibe la formation de néovaisseaux. Par conséquent, elle est indiquée comme traitement adjuvant des stratégies anti-angiogéniques médicamenteuses pour les tumeurs survivantes situées dans des régions mal perfusées.

Des résultats d’études prometteurs

Activation du système immunitaire induite par hyperthermie
Pourquoi l'hyperthermie simplifie les interventions chirurgicales

> Forte diminution des tumeurs

Étant donné qu’un traitement par hyperthermie détruit de très nombreuses cellules, il permet souvent de réduire très sensiblement la taille d’un foyer tumoral et, ainsi, de faciliter ou tout simplement de rendre possible l’exérèse chirurgicale de la tumeur. L’hyperthermie joue un rôle important en préopératoire, notamment dans les cas où la résection de la tumeur est dangereuse voire impossible en raison de sa proximité avec des tissus sensibles. L’hyperthermie présente également l’avantage de réduire le caractère délabrant des interventions chirurgicales (dans les opérations de la sphère ORL ou d’autres parties du corps visibles), si la tumeur a été réduite avant l’intervention.

Hyperthermie et qualité de vie

> Moins d’effets secondaires, moins de douleurs

De nombreuses études montrent que la qualité de vie de patients atteints d’un cancer peut être sensiblement améliorée si la chimiothérapie ou la radiothérapie est associée à un traitement par hyperthermie. Dans ces études, les effets secondaires étaient réduits considérablement et durablement. L’hyperthermie a stimulé le système immunitaire et aidé l’organisme à se remettre des effets secondaires toxiques des traitements standard. En soins palliatifs, aussi, l’hyperthermie est bénéfique pour les patients, puisqu’elle réduit les hémorragies ainsi que les infections et soulage les douleurs.
Résultats d’études à grande échelle

> Régressions significatives et meilleurs taux de survie

Au cours des quinze dernières années, 34 études cliniques (17 de phase I ou II et 17 de phase III) ont été publiées sur les effets de l’hyperthermie associée à la radiothérapie et/ou à la chimiothérapie. Les études décrites ci-après sont les principales études réalisées par les centres de recherche européens et nord-américains.

Tumeurs superficielles

En 1996, Cancer, le journal international de l’American Cancer Society, a fait état d’une étude clinique auprès de 23 patients souffrant d’un cancer ORL, d’un cancer du sein ou d’un mélanome malin, menée par Mayer et Hallinan au John Hopkins Hospital, aux États-Unis. Les résultats montrent que 89 % des patients ont présenté une rémission complète et 74 % n’ont pas présenté de récidives locales après 2 ans. Tous les patients ont été traités par hyperthermie et brachythérapie. Les auteurs concluent qu’« un traitement ambulatoire de néoplasmes humains par thermodiathermie interstitielle est faisable, sûr et efficace ». (Voir 77/11, p. 2363–2370). Dans Journal of Clinical Oncology (Vol. 23, n° 13, p. 3079-3085), une étude randomisée de phase III, menée par Ellen Jones et ses collègues sur l’hyperthermie et la radiothérapie chez des patients atteints de tumeurs superficielles, a été publiée en 1995. La majeure partie des 109 patients de cette étude présentait une récidive dans la paroi thoracique. Les autres souffraient d’une tumeur de la tête et du cou ou d’un mélanome. À la fin du traitement, une rémission complète a été constatée chez 66 % des patients ayant reçu un traitement par hyperthermie en complément de la radiothérapie, contre 42 % chez les patients n’ayant pas reçu d’hyperthermie. Chez les patients qui avaient déjà suivi une radiothérapie, cet effet était encore plus prononcé : 68 % des patients du groupe ayant reçu un traitement par hyperthermie ont présenté une rémission complète, contre seulement 24 % dans le groupe n’ayant pas bénéficié de la thermodiathermie.

Tumeurs de la tête et du cou

En 1993, le International Journal of Radiation Oncology, Biology, Physics a publié les résultats d’une étude de phase III menée auprès de 41 patients atteints d’un cancer ORL de stade IV inopérable, par Valdagni et Amichelli à l’Ospedale S. Chiara à Trente, en Italie. Les résultats de cette étude montrent que l’association de l’hyperthermie et de la radiothérapie a permis d’augmenter les rémissions complètes de 41 % à 83 %, la survie sans récidive locale de 24 % à 68 % et le taux de survie à 5 ans de 0 % à 53 %, par rapport à une radiothérapie seule (voir Vol. 28, p. 163-169).

Mélanome malin

En 1996, les résultats d’une étude multicentrique de phase III sur des mélanomes malins récidivants ou métastatiques (menée par Overgaard et al., Aarhus, Danemark) ont été publiés dans le International Journal of Hyperthermia. Cette étude a montré que l’hyperthermie associée à la radiothérapie permet, par rapport à la radiothérapie seule, d’accroître le taux de rémission complète de 35 % à 62 %, et la survie sans récidive à 5 ans de 28 % à 46 % (voir Vol. 12, n° 1, p. 3-20).
Cancer du sein

Les résultats d’une étude clinique multicentrique de phase III, qui a inclus 306 patients atteints d’un cancer du sein localisé superficiel, ont été publiés par Vernon, Hand, Field et al. (Londres, Grande-Bretagne) en 1996 dans le *International Journal of Radiation Oncology, Biology, Physics.* Cette étude a montré que le taux de rémission complète est passé de 41 % à 59 %, et le taux de survie sans récidive de 30 % à 50 %, chez les patients ayant reçu une radiothérapie associée à l’hyperthermie, par rapport à ceux ayant suivi une radiothérapie seule (voir Vol. 35, n° 4, p. 731-744).

Glioblastome

Les résultats d’une étude clinique de phase III (réalisée par Sneed, Stauffer, McDermott et al. à l’Université de Californie - San Francisco) menée auprès de 112 patients atteints d’un glioblastome multiforme ont été publiés en 1998 dans le *International Journal of Radiation Oncology, Biology, Physics.* Cette étude a révélé que le taux de survie à 2 ans a été multiplié par deux chez les patients ayant bénéficié d’une brachythérapie associée à un traitement par hyperthermie, par rapport à ceux traités par brachythérapie seule (voir Vol. 40, n° 2, p. 287-295).

Sarcomes des tissus mous

Les résultats prometteurs d’une étude multicentrique randomisée de phase III, portant sur les sarcomes à haut risque des tissus mous (menée par : Rolf Issels, University Hospital Großhadern, pour l’EORTC-STBSG (European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group) et pour l’ESHÖ (European Society for Hyperthermic Oncology)) à laquelle 341 patients ont participé, avaient déjà été présentés à la rencontre de l’ASCO en 2007. Les patients avaient été traités avant et après une intervention chirurgicale par chimiothérapies ou conjointement par hyperthermie, puis dans les deux cas par radiothérapie. Les résultats ont été publiés en ligne dans *Lancet Oncology* en Avril 2010. Les résultats exposés sont clairs et significatifs: le taux de réponse global après traitement par hyperthermie fut plus de deux fois supérieur chez les patients du groupe ayant suivi un traitement combiné, en comparaison avec le groupe ayant suivi un traitement comprenant uniquement la chimiothérapie (28,8 % pour les premiers contre 12,7 % pour les seconds). La durée de survie moyenne sans maladie a été prolongée de 14 mois dans le groupe traité par hyperthermie, en comparaison avec le groupe contrôle (32 mois chez les premiers, pour 18 mois chez les seconds). La survie globale fut significativement plus longue chez des patients présentant des signes précoces de progression de la maladie et ayant reçu en conséquence un traitement néoadjuvant combiné à un traitement par hyperthermie.

Tumeurs pelviennes

Une étude clinique de phase III, menée par Zee, Gonzalez Gonzalez, van Rhoon et al. (Rotterdam et Amsterdam, Pays-Bas) auprès de 358 patients atteints de tumeurs pelviennes localisées avancées, a été publiée en 2000 dans *Lancet.* Cette étude a montré que l’hyperthermie associée à la radiothérapie a permis d’augmenter le taux de rémission complète de 51 % à 73 % pour les cancers de la vessie, et de 57 % à 83 % pour les cancers du col de l’utérus avancés. Le taux de survie à 3 ans était de 51 % dans le groupe ayant bénéficié de l’hyperthermie et de la radiothérapie, contre 27 % dans celui ayant reçu une radiothérapie seule (voir Vol. 355, p. 1119-1125).

Cancer du col de l’utérus

Martine Franckena, du Erasmus Medical Center de l’université de Rotterdam, a publié une étude (parue dans *Int J Radiat Oncol Biol Phys. 2008 Mar 15;4*) dans laquelle des patientes atteintes d’un cancer du col de l’utérus, traitées avec ou sans hyperthermie, ont été suivies pendant 12 ans. Cette étude a révélé que seulement 20 % des patientes ayant reçu une radiothérapie seule ont survécu, contre 37 % des femmes ayant également bénéficié d’un traitement par hyperthermie. Ce résultat très significatif montre, pour la première fois, que le bénéfice de l’hyperthermie ne persiste pas uniquement sur le court terme, mais qu’il est aussi durable.
Bénéfices thérapeutiques de l’hyperthermie

En résumé, les études et expériences cliniques rapportent que l’hyperthermie est associée aux bénéfices thérapeutiques suivants :

- Augmentation des taux de survie
- Amélioration du contrôle tumoral local et de la durée du contrôle tumoral local
- Hausse des taux de rémission
- Diminution de la morbidité
- Destruction directe des cellules tumorales
- Amélioration de la palliation et durabilité de cet effet
- Amélioration de la qualité de vie
- Efficacité accrue des autres modalités thérapeutiques sans augmentation de la toxicité
- Amélioration de l’oxygénation du tissu tumoral, permettant d’augmenter l’efficacité de la radiothérapie
- Destruction des cellules radiorésistantes et sensibles à la chaleur
- Amélioration du taux de réponse aux cytostatiques
- Amélioration des possibilités thérapeutiques en termes de taille et de progression des tumeurs
- Augmentation de l’absorption de cytostatiques dans les cellules
- Synergie avec les cytostatiques
- Destruction des cellules chimiorésistantes
- Activateur des thérapies géniques
- Réduction de la taille tumoraire, pour rendre possible la résection et/ou augmenter la sécurité de la résection
- Caractère moins délabrant de la résection chirurgicale
- Amélioration des résultats fonctionnels après l’opération
- Amélioration de l’efficacité en cas de radiothérapies répétées
- Amélioration des résultats lors de l’association à la radiothérapie et à la chimiothérapie (thermoradiothérapie / thermochimiothérapie)
Promoteurs et centres de recherche sur l’hyperthermie

De la recherche à l’application clinique

Aux États-Unis, le National Cancer Institute a reconnu l’hyperthermie comme une modalité thérapeutique anticancéreuse et a financé la recherche, le développement et l’amélioration de cette technique à hauteur de plusieurs dizaines de millions de dollars.

Les institutions européennes n’ont pas été moins généreuses. La Deutsche Krebshilfe a déclaré l’hyperthermie comme une nouvelle méthode anticancéreuse efficace, tandis que la Deutsche Forschungsgemeinschaft en est l’un des principaux promoteurs.

Les organismes d’assurance-maladie aux Pays-Bas ont financé une étude décisive sur le traitement par hyperthermie des tumeurs pelviennes. L’EORTC (organisation européenne de recherche et de traitement du cancer) a garanti la qualité de la recherche sur l’hyperthermie en Europe.

De nombreux appareils et dispositifs utilisés dans le monde entier pour la recherche et le traitement par hyperthermie ont été mis au point et fabriqués par BSD Medical Corporation.

Pour obtenir plus d’informations sur l’hyperthermie, ses indications et les centres certifiés dans lesquels elle est mise en œuvre, consulter notre site Internet :

www.sennewald.de
Si vous avez des questions contactez-nous :

Vente :
Martin Wadepohl
Téléphone : +49 89 54214310
martin.wadepohl@sennewald.de

Communications/Marketing :
Monica Sennewald
Téléphone : +49 89 54214325
monica.sennewald@sennewald.de

Informations techniques :
Günter Futschik
Téléphone : +49 89 54214331
guenter.futschik@sennewald.de

Notre adresse

Dr. Sennewald Medizintechnik GmbH
Schatzbogen 86
81829 Munich
Allemagne

Vous trouverez des informations complémentaires sur notre site www.sennewald.de.